

LCDlogic LCD development will

never be **easier**!

LCDlogic was designed to be very simple and effective solution for using Liquid Crystal Displays based on the HD44780 controller (or equivalent controllers).

Only one UART line is necessary to configure, interface your display. You also need 2 wires for power supply and ground.

All the setting are adjustable via software commands and are saved automatically when changed. Settings are stored in internal EEPROM and loaded during power up.

Interface Specifications

Default Communication Settings :

- BAUD Rate : 9600¹
- 8bits per transfer
- 1 Start bit, 1 Stop bit
- \circ $\,$ No parity bit $\,$

The LCDlogic is controlled using actual ASCII characters. That is, if you send via the UART interface the ASCII character 'i' (0x69) to LCDlogic, an 'i' will be displayed on the LCD and the cursor position will be incremented by 1.

The only exception is the character (0x11) which is used as command frame header. A command frame is composed of this character followed by a command identifier and a parameter if it is necessary.

For easy C language integration, a header file is available on our web site including definitions for command identifiers and default parameters. To download it follow the link below: www.ikalogic.com/LCDlogic/header.h

IMPORTANT: Before connecting LCD Logic to an LCD screen, It's the user responsibility to make sure it is compatible with the LCD's operating voltages and that its controller is an HD44780 or any equivalent. If you have doubts about an LCD, you may contact us with the reference of your LCD.

¹ If you change the baudrate and save it, the new one will be effective at the next power up

Table Of Content

Electrical Specifications and connections	3
Configuration	4
1. Mode Changing	5
2. BackLight control	5
3.Contrast control	6
LCD Screen size Setup	6
Cursor management	6
1.Setting Cursor Position	6
2. Moving Cursor position	7
3. Cursor Display	7
Power Save Mode	7
Reinitialize and Load Default Parameters	8
	8
BAUD Rate definition (UART)	8
Defining your own SplashScreen	8
LCD Direct Command	9
Custom Characters	9
1. LCDlogic FirmWare	9
2. Creating Your Own Character	10
3. Bargraphs	11
Mechanical specifications	12
Getting more help	12

Electrical Specifications and connections

The minimum power supply voltage is 3.6 VDC and the absolute maximum is 5.5VDC without causing micro controller or LCD damages.

LCD Logic Pinout

Pin group	Pin name	Function	Comments					
	VCC	Power supply	3.6V min, 5.5V max					
USER INTERFACE	UART_IN	UART Input	UART Input from the micro controller					
	GND	GND	Connect to the GND of the controller					
	LGND	LCD GND connection						
	LVCC	LCD VCC connection						
	VO	Output Voltage						
	RS	Register Select						
LCD INTERFACE	R/W	Read/write	To be directly connected to your 16-PINs LCD					
	E	Enable						
	D4 to D7	Data						
	BLA	Anode for Back-light						
	BLK	Cathode for back- light						
	GND	GND						
	VCC	Power supply	Used for programming the micro controller of the LCD					
Programming	RST	_	Logic. Do not interface those pins unless you need to					
Interface	SCK	SPI Interface PINIs	reprogram the LCD Logic controller.					
	MISO		i or advanced users only.					
	MOSI							

.......

Configuration

The LCDlogic firmware allows you to configure each parameter via UART command frames. A command frame is composed of three bytes:

- The command header: CMD_CHAR [0x11]
- The Command code from the table below
- A parameter corresponding to the command. Depending on the command, it may not be necessary, so a null parameter may be sent.

Command	ID in Library	HEX	Parameter
MOVE CURSOR TO LINE 0	CMD_LINE_0	0x00	$0 \rightarrow 20 / PAR_COLUMN_X$
MOVE CURSOR TO LINE 1	CMD_LINE_1	0x01	$0 \rightarrow 20 / PAR_COLUMN_X$
MOVE CURSOR TO LINE 2	CMD_LINE_2	0x02	$0 \rightarrow 20 / PAR_COLUMN_X$
MOVE CURSOR TO LINE 3	CMD_LINE_3	0x03	$0 \rightarrow 20 / PAR_COLUMN_X$
BACKLIGHT Control	CMD_BACKLIGHT	0x65	$0 \rightarrow 255 / PAR_BL_XX\%$
CONTRAST Control	CMD_CONTRAST	0x66	$0 \rightarrow 255$
LCD LINES NUMBER	CMD_NB_LINE	0x67	$1 \rightarrow 4$
LCD COLUMNS NUMBER	CMD_NB_COLUMN	0x68	$1 \rightarrow 20$
CLEAR SCREEN	CMD_CLR_SCRN	0x69	0 / PAR_DEFAULT
POWER SAVE MODE	CMD_PWR_SV_MD	0x6B	0 / PAR_DEFAULT
DIRECT MODE ON	CMD_DRCT_MD_ON	0x30	0 / PAR_DEFAULT
DIRECT MODE OFF (Standard)	CMD_DRCT_MD_OFF	0x31	0 / PAR_DEFAULT
CURSOR DISPLAY	CMD_DSPL_CURSOR	0x6C	0 / PAR_DEFAULT
SET RS	CMD_RS_SET	0X6D	LCD Command to send
CLEAR RS	CMD_RS_CLEAR	0x6E	LCD Command o send
SAVE SPLASHSCREEN	CMD_SV_SPLSHSCRN	0x72	0 / PAR_DEFAULT
RE-INIT with DEFAULT PARAMETERS	CMD_LD_DEFAULT_PAR	0x73	0 / PAR_DEFAULT
CHANGE BAUDRATE	CMD_CHG_BR	0x74	$1 \rightarrow 7 / PAR_BR_XXXX$
MOVE ONE RIGHT	CMD_MOV_RIGHT	0xC0	0 / PAR_DEFAULT
MOVE ONE LEFT	CMD_MOV_LEFT	0xC1	0 / PAR_DEFAULT
MOVE ONE UP	CMD_MOV_UP	0xC2	0 / PAR_DEFAULT
MOVE ONE DOWN	CMD_MOV_DOWN	0xC3	0 / PAR_DEFAULT

There are two main operating modes : The first one is the standard mode, it is used to display characters on an LCD. The second mode is the Direct Command Mode, which allows you to use the LCDlogic as a serial to parallel adaptor. In this mode one can send commands and data via the UART interface to the LCD PINs directly. The table bellow shows you all the LCDlogic capabilities and the modes where they are available:

STANDARD MODE	DIRECT COMMAND MODE		
SERIAL IN	TERFACE		
BACKLIGHT SOFT	WARE CONTROL		
CONTRAST SOFT	WAREC ONTROL		
BAUDRATE CHANGE			
LCD SETUP			
CURSOR POSITIONNING	SET RS		
EASY TO USE BARGRAPHS	CLEAR RS		
CUSTOM CHARACTERS	CREATE YOUR OWN CHARACTER		
AUTOMATIC DISPLAY			

1. Mode Changing

To use Direct Command mode, first you have to send the command character CMD_CHAR [0x11] followed by the direct command identifier DIRECT_COMMAND_MODE [0x30]. At this point, the direct command mode is active, and you can use the SET_RS and CLEAR_RS commands to send data bytes to the LCD.

The SET_RS command is used to send a data byte while the RS² pin of the LCD is set.

The CLEAR_RS command is used to send a data byte while the RS pin of the LCD is cleared.

The following example UART frame sends the data byte 0xAA to the LCD while the RS pin is set:

UART	0x11	0x65	0xAA
FRAME:	CMD_CHAR	CMD_RS_SET	Parameter

2. BackLight control

The LCDlogic controls the Backlight with a PWM signal via a MOSFET transistor. By sending the command character CMD_CHAR (0x11) followed by the backlight identifier CMD_BACKLIGHT (0x65) and a value between 0 and 0xFF the Backlight value is set.

The brightness reduction allows a lower power consumption. The chosen backlight is stored automatically in LCDlogic (Non-Volatile Memory), so that it is re-loaded at next power up.

UART	0x11	0x65	0xFF
FRAME:			Parameter

2 RS: Register Select.

3.Contrast control

Contrast can be adjusted from 0 to 255, 255 being the higher contrast level.

The contrast level is automatically regulated, that is, if the power supply voltage changes the contrast control will adapts in consequence. Hence, very small contrast change is visually observable when power supply voltages changes (E.g. battery voltage dropping)

Example :

If you send on the UART the frame CMD_CHAR [0x11], CMD_CONTRAST [0x76], and the parameter (e.g. 0x7F), the contrast is set to an average value.

LCD Screen size Setup

LCDlogic can be used for the following types of LCDs based on the very common HD44780:

- 1, 2 and 3 lines
- 8, 12, 16, and 20 characters wide

To setup your LCD Type, you need to specify its number of lines and its number of columns. For this, you have to use the command identifier CMD_NB_LINE [0x67] for lines and CMD_NB_COLUMN [0x68] for columns.

Example :

If you send on the UART the frame CMD_CHAR [0x11], CMD_NB_LINE [0x67], LINE_4 [0x04], followed by CMD_CHAR [0x11], CMD_NB_COLUMN [0x68], COLUMN_20 [0x14], the LCDlogic will be configured to work with a 4x20 LCD

Cursor management

1.Setting Cursor Position

The cursor shows you where the next character sent on the UART line, will be displayed on the screen.

The LCDlogic allows you to position the cursor text (where the next character will be written).

If you want to position your cursor, you have to send the command character CMD_CHAR [0x11] followed by the line index (LINE_X) and the column (COLUMN_X) index.

Example :											
If you send on the UART the frame CMD_CHAR [0x11], LINE_0 [0x00],COLUMN_6 [0x06] and the character 'i' your LCD will display :											
	i										

LCDlogic Datasheet

2. Moving Cursor position

The cursor's position can be moved step by step in any of the 4 directions .

The following table describe the command corresponding to each direction. When using one of those commands, send 0x00 as a parameter.

3. Cursor Display

You can display or hide the cursor position in the screen using the command identifier CMD_DSPL_CURSOR [0x6C].

If the parameter is set to 1, the cursor will be displayed. Otherwise the cursor will be hidden.

	0,0	• /// -	0, =	0,0
_				

<

0x71

Cursor

Movement

Hex Code 0x70

direction

Example :

>

If you send on the UART the frame CMD_CHAR [0x11], CMD_DSPL_CURSOR [0x6C], and 0x01 as a parameter, the cursor will be displayed.

UART	0x11	0x6C	0x01
		1	Λ.
FRAME:	CMD CHAR	CMD DSPL CURSOR	Parameter

Power Save Mode

In order to reduce power consumption and if your application doesn't need the LCD you can put it in the power save mode. Your LCD will be switched off and LCDlogic will go in low power consumption mode. This is done using CMD_POWER _SAVE_MODE [0x6B]. In this mode the consumption of the LCDLogic goes down to **less than 1 \muA**.

To return to normal mode, you have to send any character or command frame on UART Line. Be advised that this character or this command will only be used for waking up LCDlogic and will not be displayed. Upon wake-up, the LCD will have the exact same configuration as before the shut down.

Example :
If you send on the UART the frame CMD_CHAR [0x11], CMD_POWER_SAVE_MODE 0x6B LCDlogic will go in low power consumption mode. If you want to go back in normal mode just send the same frame or any character

UART	0x11	Ох6В 🛛	0x00	
FRAME:	CMD CHAR	CMD POWER SAVE MODE	Parameter	

Λ

0x72

v

0x73

Reinitialize and Load Default Parameters

If you want to reinitialize LCDlogic with the default factory settings you just have to send on the UART line a classic 3 Bytes frame with the command CMD LD DEFAULT PAR - [0x73]

Ехс	imple :							
lf	you	sent	on	UART	:	CMD	_CHAR	[0x11],
CN	ID_LD_	DEFAL	ILT_P/	AR [0x73	3],	[0x00]	you w	vill load
the	the following parameter :							
- ۸	lumbe	r Of Lin	e : 2			Cor	ntrast :	0xDF
- ۸	lumbe	r Of Co	lumn	: 16		Back	Light :	OxFF

BaudRate : 9600bd

BAUD Rate definition (UART)

LCDLogic offers the possibility to change the serial Baud rate from 2400 bps to 38400kbps.

For that, the command character CMD CHAR (0x11) should be sent on the UART line, followed by the identifier CMD_CHANGE_BAUDRATE [0x74] and the corresponding Baud rate identifier (BR ID) from the next table

The default Baudrate is 9600 bps.

Baud rate can also be changed via the USB software.

Defining	your	own	Sp	lash	Screen
----------	------	-----	----	------	--------

Splash screen and the corresponding display duration. This means that at the power up, the chosen message will be display during the chosen choose duration.

To adjust the splashscreen, first ensure that the LCD is displaying the desired splash screen content. Next, send the command character CMD_CHAR [0x11], the command identifier SAVE_SPLASH_SCREEN [0x75] and the duration parameter as defined by this formula :

Time $_{SplashSreen}(ms) = parameter \times 10 ms$ Note that when the splash screen is saved, the contrast and the backlight levels are also saved and are used each time the Splashscreen is displayed. When the splash screen is saved, the LCD content is

BR/ bps	2400	4800	9600	14k4	19k2	28k8	38k4
BR_ ID	0x01	0x02	0x03	0x04	0x05	0x06	0x07

Example :

Example: If you send on UART the frame CMD_CHAR (0x11), CMD CHANGE BAUDRATE (0x74) and (0x01) as a parameter, the BaudRate will be set to 2400 bps.

The user has the possibility to define his own erased and the cursor goes on the initial position.

If you want to deactivate the splash screen just time null parameter in the а SAVE_SPLASH_SCREEN command.

Example : After sending characters to display this screen:															
		L	С	D	L	0	G	I	С		v	1		0	
W	w	w		I	к	Α	L	0	G	I	С		С	0	м
lf y [Ox: and	If you send CMD_CHAR [0x11], SAVE_SPLASH_SCREEN [0x72], [0x64] (Time/10ms), this screen will be erase and it will appear during 1s at the pext power up														

LCD Direct Command

LCDlogic provides you the possibility to send some commands directly to your LCD. These commands can be sent with RS pin at logic level 0 or at 1.

If you want to send direct commands with RS set use the command identifier CMD_SET_RS [0x6D] and the value to send as a parameter.

If you want to send direct commands with RS clear use the command identifier CMD_CLEAR_RS [0x6E] and the value to send as a parameter.

This example shows how to clear the screen in using HD44780 commands: <u>1- Choose the direct command mode</u>

Send on UART: CMD_CHAR [0x11], DIRECT_COMMAND_MODE [0x30], [0x00]

2 - Send LCD clear command mode with RS set

Send on UART: CMD_CHAR [0x11], CMD_SET_RS [0x6D], [0x01] (0x01 is the clear screen command as defined in the standard HD44780 commands table)

Custom Characters

1. LCDlogic FirmWare

Each HD44780 based LCDs have is own character table. This table contains the standard ASCII characters from 0x20 to 0x7F. The others characters depend on the controller but you can configure the 8 first characters stored on the LCD table from 0x00 to 0x07.

The LCDlogic firmware allows you to define those 8 first characters easily and quickly using a set of preprogrammed icons. If you want to use it, you just have to send the command identifier corresponding to the character expected. Next, you have to choose the LCD address from 0x00 to 0x07 where you want to store the new character definition. You have to wait minimum 100ms between two uses of this command.

List of pre-programmed icons with their corresponding identifiers:

0x80	0x81	0x82	0x83	0x84	0x85	0x86	0x87	0x88	0x89	0x8A	0x8B	0x8C	0x90	0x91	0x92	0x93	0x94	0x95
Ō			╼┫╺	с т	¦∙)	:-C	¦∙I	\mathbf{Y}	Х	ተ	÷	7	R, I	E,	Ľ	+	Ø.	¥

2. Creating Your Own Character

If you want to add your own character in the LCD, you have to use the Direct Command mode. Please refer to the example below :	<u>3 – Send the bytes which describe your custon</u> character with the RS cleared.							
Example: Defining a new custom character so that an 'I' is displayed when we send 0x01 on the UART.	In our example send : - CMD_CHAR [0x11],CMD_CLEAR_RS[0x6D],[0x1F] - CMD_CHAR [0x11],CMD_CLEAR_RS[0x6D],[0x04]							
<u>1- Choose the direct command mode</u> Send CMD_CHAR [0x11], DIRECT_COMMAND_MODE [0x30], [0x00] 2 - Choose the LCD memory address where you	 - CMD_CHAR [0x11],CMD_CLEAR_RS[0x6D],[0x04] - CMD_CHAR [0x11],CMD_CLEAR_RS[0x6D],[0x1F]							
want to store your new character definition with the <u>RS set</u> . For our example it's 0x48, because the start address is 0x40, and each character takes 8 bytes.	Now, if you go in a standard mode(CMD_CHAR [0x11], DIRECT_COMMAND_MODE [0x31], follow by the character 0x01, a 'I' will be display.							
<i>Send</i> Send CMD_CHAR <i>[0x11],</i> CMD_SET_RS [0x6D], <i>[0x48]</i>								

3. Bargraphs

A bargraph is a visual indicator that is proportional to a given signal. There are a lot of applications where it's very interesting to use bargraphs and that's why we provide you with this solution.

When using LCDLogic bargraphs, the custom characters of your LCD (from 0x00 to 0x07) will be replaced.

To use horizontal bargraph use the command To use vertical bargraph use the command identifier identifier CHAR_BARGRAPH_HORIZONTAL [0x96]. The characters downloaded in the LCD memory are present in the table below:

CHAR_BARGRAPH_VERTICAL [0x97]. The characters downloaded in the LCD memory are present in the table below:

Char. LCDlogic	0x00	0x01	0x02	0x03	0x04	0x05	Char. LCDlogic	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07
Car. Bargraph							Car. Bargraph								

Mechanical specifications

Getting more help

For most up to date information and more specifications, please visit:

http://www.ikalogic.com/lcdlogic.php

